Package net.i2p.crypto.eddsa.math
Class Encoding
java.lang.Object
net.i2p.crypto.eddsa.math.Encoding
- All Implemented Interfaces:
Serializable
- Direct Known Subclasses:
BigIntegerLittleEndianEncoding
,Ed25519LittleEndianEncoding
public abstract class Encoding extends Object implements Serializable
Common interface for all $(b-1)$-bit encodings of elements
of EdDSA finite fields.
- Since:
- 0.9.15
- Author:
- str4d
- See Also:
- Serialized Form
-
Field Summary
-
Constructor Summary
Constructors Constructor Description Encoding()
-
Method Summary
Modifier and Type Method Description abstract FieldElement
decode(byte[] in)
Decode a FieldElement from its $(b-1)$-bit encoding.abstract byte[]
encode(FieldElement x)
Encode a FieldElement in its $(b-1)$-bit encoding.abstract boolean
isNegative(FieldElement x)
From the Ed25519 paper:
$x$ is negative if the $(b-1)$-bit encoding of $x$ is lexicographically larger than the $(b-1)$-bit encoding of -x.void
setField(Field f)
-
Field Details
-
Constructor Details
-
Encoding
public Encoding()
-
-
Method Details
-
setField
-
encode
Encode a FieldElement in its $(b-1)$-bit encoding.- Parameters:
x
- the FieldElement to encode- Returns:
- the $(b-1)$-bit encoding of this FieldElement.
-
decode
Decode a FieldElement from its $(b-1)$-bit encoding. The highest bit is masked out.- Parameters:
in
- the $(b-1)$-bit encoding of a FieldElement.- Returns:
- the FieldElement represented by 'val'.
-
isNegative
From the Ed25519 paper:
$x$ is negative if the $(b-1)$-bit encoding of $x$ is lexicographically larger than the $(b-1)$-bit encoding of -x. If $q$ is an odd prime and the encoding is the little-endian representation of $\{0, 1,\dots, q-1\}$ then the negative elements of $F_q$ are $\{1, 3, 5,\dots, q-2\}$.- Parameters:
x
- the FieldElement to check- Returns:
- true if negative
-