Class Ed25519ScalarOps
java.lang.Object
net.i2p.crypto.eddsa.math.ed25519.Ed25519ScalarOps
- All Implemented Interfaces:
Serializable
,ScalarOps
public class Ed25519ScalarOps extends Object implements ScalarOps
Class for reducing a huge integer modulo the group order q and
doing a combined multiply plus add plus reduce operation.
$q = 2^{252} + 27742317777372353535851937790883648493$.
Reviewed/commented by Bloody Rookie (nemproject@gmx.de)
- See Also:
- Serialized Form
-
Constructor Summary
Constructors Constructor Description Ed25519ScalarOps()
-
Method Summary
Modifier and Type Method Description byte[]
multiplyAndAdd(byte[] a, byte[] b, byte[] c)
$(ab+c) \bmod q$byte[]
reduce(byte[] s)
Reduction modulo the group order $q$.
-
Constructor Details
-
Ed25519ScalarOps
public Ed25519ScalarOps()
-
-
Method Details
-
reduce
public byte[] reduce(byte[] s)Reduction modulo the group order $q$.Input: $s[0]+256*s[1]+\dots+256^{63}*s[63] = s$
Output: $s[0]+256*s[1]+\dots+256^{31}*s[31] = s \bmod q$ where $q = 2^{252} + 27742317777372353535851937790883648493$.
-
multiplyAndAdd
public byte[] multiplyAndAdd(byte[] a, byte[] b, byte[] c)$(ab+c) \bmod q$Input:
- $a[0]+256*a[1]+\dots+256^{31}*a[31] = a$
- $b[0]+256*b[1]+\dots+256^{31}*b[31] = b$
- $c[0]+256*c[1]+\dots+256^{31}*c[31] = c$
Output: $result[0]+256*result[1]+\dots+256^{31}*result[31] = (ab+c) \bmod q$ where $q = 2^{252} + 27742317777372353535851937790883648493$.
See the comments in
reduce(byte[])
for an explanation of the algorithm.- Specified by:
multiplyAndAdd
in interfaceScalarOps
- Parameters:
a
- a scalarb
- a scalarc
- a scalar- Returns:
- $(a*b + c) \bmod l$
-